首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   30篇
  国内免费   46篇
  2023年   9篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   15篇
  2018年   11篇
  2017年   10篇
  2016年   15篇
  2015年   8篇
  2014年   11篇
  2013年   21篇
  2012年   16篇
  2011年   17篇
  2010年   8篇
  2009年   12篇
  2008年   21篇
  2007年   18篇
  2006年   12篇
  2005年   26篇
  2004年   20篇
  2003年   16篇
  2002年   14篇
  2001年   19篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   4篇
  1996年   9篇
  1995年   12篇
  1994年   9篇
  1993年   13篇
  1992年   11篇
  1991年   8篇
  1990年   18篇
  1989年   9篇
  1988年   5篇
  1987年   20篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有484条查询结果,搜索用时 420 毫秒
431.
In this study, we investigated the effect of astaxanthin (Ast) and aluminum (Al) on the erythrocyte glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) enzymes activities in vivo and on G6PD enzyme in vitro in rats. For in vitro studies, G6PD enzyme was purified from rat erythrocyte by using 2′,5′‐ADP‐Sepharose 4B affinity gel. The effects of Ast and Al3+ ion were investigated on the purified enzyme. It was determined that Ast increased the enzyme activity, whereas Al3+ inhibited the enzyme activity noncompetitively (IC50 values; 0.679 mM, Ki values 1.32 mM). For in vivo studies, the rats were divided into the groups: control (Cont.), Al, Ast, and Al + Ast. The last three groups were compared with the control group. In Al group, a significant degree of inhibition was observed in the activity of G6PD and 6PGD enzymes when compared with the control group (P < 0.05), whereas there was an increase in the activities of G6PD and 6PGD enzymes in Ast and Al + Ast groups (P < 0.05).  相似文献   
432.
A Schiff base compound derived from naphthalene has been synthesized and characterized as an Al3+‐selective fluorescent probe. The chemosensor ( L ) exhibits high selectively for Al3+ in aqueous solution, even in the presence of biologically relevant cations such as Na+, K+, Ca2+, Mg2+, Pb2+ and several transition metal ions. There was no observed interference from anions like Br?, Cl?, HSO3?, SO32?, S2O32?, NO2?, CO32? and AC?. The lowest detection limit for the chemosensor L was found to be 1.89 × 10?8 M with a linear response towards Al3+ over a concentration range of 5 × 10?6 to 4 × 10?5 M. Furthermore, the proposed chemosensor has been used for imaging of Al3+ in two different types of cells with satisfying results, which further demonstrates its value for practical application in biological systems.  相似文献   
433.
施肥方式和园龄对洛川苹果园土壤钙素退化的影响   总被引:1,自引:0,他引:1  
为明确黄土高原苹果产区施肥方式和园龄对土壤钙素含量和钙素贮量的影响,本研究以位于世界苹果优生区的陕西省洛川县苹果园为研究对象,分别研究不同施肥方式和不同园龄苹果园0~100 cm土层土壤碳酸钙、水溶性钙和交换性钙含量及其贮量的变化特征.结果表明: 洛川县苹果园土壤钙素递减式退化现象严重,长期大量单施化肥苹果园土壤钙素退化现象明显大于化肥与农家有机肥配施苹果园,单施化肥苹果园比化肥与农家有机肥配施苹果园0~100 cm土层土壤碳酸钙、水溶性钙和交换性钙平均含量分别减少38.8%、25.4%和5.6%,3种形态土壤钙素贮量依次减少36.4%、26.0%和4.3%;苹果园土壤钙素退化程度随园龄增加不断加剧,园龄>25年苹果园比园龄≤10年苹果园0~100 cm土层土壤碳酸钙、水溶性钙和交换性钙平均含量分别减少48.8%、69.4%和39.5%,3种形态土壤钙素贮量分别减少40.8%、64.1%和33.0%.长期大量单施化肥和长期种植苹果树均对土壤碳酸钙、水溶性钙、交换性钙有明显的耗竭作用,钙素递减式退化特征明显,化肥与农家有机肥配施能够有效减缓土壤钙素退化,对于园龄>25年的高龄苹果园应加强土壤钙素管理.施肥方式是苹果园土壤钙素递减的驱动因素,钙素递减呈现出明显的时(园龄)空(土层深度)效应.  相似文献   
434.
To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) nearisogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2 transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways.The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.  相似文献   
435.
Hansen  Jonas  Reitzel  Kasper  Jensen  Henning S.  Andersen  Frede Ø. 《Hydrobiologia》2003,492(1-3):139-149
The effects of oxygen, aluminum, iron and nitrate additions on phosphate release from the sediment were evaluated in the softwater Lake Vedsted, Denmark, by a 34-day experiment with undisturbed sediment cores. Six treatments were applied: (1) Control - O2 (0–20% saturation), (2) O2 (100% saturation) (3) Al3+ – O2, (4) Fe3+ + O2, (5) Fe3+ – O2, and (6) NO3 – O2. Al2(SO4)3*18 H2O and FeCl3*4H2O were added in amounts that theoretically should immobilize the exchangeable P-pool in the top 5 cm of the sediment, while sodium nitrate concentrations were increased to 5 mg N l–1. The four treatments with metals or NO3 reduced the P efflux from the sediment significantly as compared to the suboxic control treatment. Mean accumulated P-release rates for suboxic treatments with Al3+, Fe3+, and NO3 were: –0.27 mmol m–2 (st. dev = 0.02 mmol m–2, N = 5), 0.58 mmol m–2 (st. dev = 0.30 mmol m–2, N = 5) and 1.40 mmol m–2 (st. dev = 0.14 mmol m–2, N = 5), respectively. The oxic treatment with Fe3+ had a P efflux of 0.36 mmol m–2 (st. dev = 0.08 mmol m–2, N = 5). The two highest P-release rates were observed in the control treatment and the treatment with O2 (14.50 mmol m–2 (st. dev = 3.90 mmol m–2, N = 5) and 2.31 mmol m–2 (st. dev = 0.80 mmol m–2, N = 5), respectively). In order to identify changes in the P and Fe binding sites in the sediment as caused by the treatments, a sequential P extraction procedure was applied on the sediment before and after the efflux experiment. Addition of O2, Fe3+ and NO3 to the sediment increased the amounts of oxidized Fe3+ and PBD. Al3+ addition resulted in a lower fraction of PBD but a correspondingly higher fraction of Al-bound P. Addition of Al3+ decreased the Fe-efflux from the suboxic sediment as well as the amount of oxidized Fe3+ in the sediment. This questions the use of Al compounds that contain sulfate because of the possible formation of FeS, which will restrict upward migration of Fe2+ and the formation of new Fe-oxides in the surface sediment. Instead, we suggest the use of AlCl3 for lake restoration purposes.  相似文献   
436.
Photodynamic treatment (PDT) employs a photosensitizer and the light-induced formation of reactive oxygen species--antagonized by cellular antioxidant systems--for the removal of harmful cells. This study addresses the effect of altered carbohydrate metabolism on the cellular antioxidant glutathione system, and the subsequent responses to PDT. It is shown that glucose-deprivation of 18 h prior to PDT causes a reduced level of intracellular glutathione and an increased cytotoxicity of PDT. These effects can be mimicked by inhibitors of glutathione synthesis (buthionine-sulfoximine) or its regeneration (1,3-bis-(2-chlorethyl)-1-nitrosourea). Inhibited glutathione metabolism shifts the apoptotic window to lower fluences, while glucose deprivation abolishes apoptosis as a result of ATP deficiency. Our results prove evidence for manipulation of the outcome of PDT through internal metabolic pathways.  相似文献   
437.
Klein S  Franco M  Chardin P  Luton F 《FEBS letters》2005,579(25):5741-5745
Aluminum fluoride (AlFx) is known to activate directly the alpha subunit of G-proteins but not the homologous small GTP-binding proteins. However, AlFx can stabilize complexes formed between Ras, RhoA or Cdc42 and their corresponding GTPase-activating proteins (GAPs). Here, we demonstrate that Arf1GDP can be converted into an active conformation by AlFx to form a complex with the Arf-GAP ASAP1 in vitro and in vivo. Within this complex ASAP1, which GAP activity is inoperative, can still alter the recruitment of paxillin to the focal complexes, thus indicating that ASAP1 interferes with focal complexes independently of its GAP activity.  相似文献   
438.
This comparative study of the intestinal absorption of four toxic metals (aluminum, manganese, nickel, and lead) carried out in rats using the in situ intestinal perfusion technique was able to measure the partition of each metal between the intestine (intestinal retention), the blood circulation, and target tissues after 1 h. The perfused metal solutions were at concentrations likely to occur during oral intoxication. It was found that aluminum (48 and 64 mM), even as a citrate complex, crossed the brush border with difficulty (0.4% of the perfused amount); about 60% of this was retained in the intestine and the remainder was found in target tissues (about 36%). Conversely, lead (4.8–48 μM) penetrated the intestine more easily (about 35% of the perfused amount), was slightly retained (about 12% of the input), and was soon found in the tissues (about 58% of the input) and to a lesser degree in circulation (about 29%). Within the same concentration range, nickel and manganese showed certain similarities, such as a reduced crossing of the brush border proportional to the increase in the concentration perfused (0.17–9.5 mM). There was similar intestinal retention and absorption (about 80% and 20% of the input, respectively). Manganese crossed the brush border more easily and was diffused more rapidly into tissues. Finally, the addition of equimolar amounts of iron (4.7 mM) produced opposite effects on the absorption of the two elements, inhibiting manganese and showing a trend to increase in nickel absorption. This could be the result of competition between Fe2+ and Mn2+ for the same transcellular transporters and the slight predominance of paracellular mechanism in the event of “Fe2+-Ni2+” association.  相似文献   
439.
Effect of aluminum on the NADPH supply and glutathione regeneration in mitochondria was analyzed. Reduced glutathione acted as a principal scavenger of reactive oxygen species in mitochondria. Aluminum inhibited the regeneration of glutathione from the oxidized form, and the effect was due to the inhibition of NADP-isocitrate dehydrogenase the only enzyme supplying NADPH in mitochondria. In cytosol, aluminum inhibited the glutathione regeneration dependent on NADPH supply by malic enzyme and NADP-isocitrate dehydrogenase, but did not affect the glucose 6-phosphate dehydrogenase dependent glutathione formation. Aluminum can cause oxidative damage on cellular biological processes by inhibiting glutathione regeneration through the inhibition of NADPH supply in mitochondria, but only a little inhibitory effect on the glutathione generation in cytosol.  相似文献   
440.
Cuenca  Gisela  De Andrade  Zita  Meneses  Erasmo 《Plant and Soil》2001,231(2):233-241
In this work, we present the results obtained after 9 months of watering with acidic solutions seedlings of Clusia multiflora, inoculated with arbuscular mycorrhizal fungi (AMF). The fungi were isolated from acid and neutral soil. C.multiflora is a tropical woody species that naturally grows on acid soils high in soluble Al. The research evaluated if arbuscular mycorrhizas (AM) could be responsible at least partially for the tolerance to acidity and to aluminum of C.multiflora and if an inoculum of AM fungi (AMF) coming from acid soils contributes more to the tolerance of acidity of C. multiflora than one coming from neutral soils. Results showed that in the absence of AMF (control treatment), the seedlings of C. multiflora did not grow, indicating that this species is highly dependent on AMF. When C. multiflora was exposed to a very acidic solution (pH 3), plants inoculated with AMF from acid soils were taller than those inoculated with AMF from neutral soils. Acidity affected root growth and root length. Plants inoculated with AMF from neutral soils showed thicker roots and lower shoot-root relationships than those inoculated with AMF from acid soils. Acidity did not affect root growth of C. multiflora inoculated with AMF from acid soils even when they were watered with solutions of pH 3. All plants accumulated high quantities of Al in roots (>10000 mg.kg –1), but plants inoculated with AMF from acid soils, accumulated less aluminum in roots than plants from the other treatments. A histochemical study of the distribution of Al in roots showed that in mycorrhizal plants, the aluminum was bound to the cell walls in the mycelium of the fungus, mainly in the vesicles or in auxiliary cells, a fact showed for the first time in this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号